Numerical Analysis
It's a julia package for Numerical Analysis.
Now, i just write a little function in it. I am a beginner of Julia and numerical analysis, there may be many problems, 👏 to discuss with me.🤣
Basic
here are some function:
Now, i just write some functions:
- Basic
- N the derivative, use ForwardDiff packageto calculate $\frac{dy}{dx}$, then recursive to get Nth derivative.(emmm, I feel a bit slow)
- Taylor Polynomial, get the value nth Taylor Ploynomial.
- Solutions for equation in one Variable
- Bisection function, find root
- fixed_point function.
- Newton's Method
- The Secant Method
- The False Position Method
- Modified Newton's Method
- Müller’s Method
- Interpolation and the Lagrange Polynomial
- nth Larange interpolating polynomial
- Neville’s Iterated Interpolation
- Newton’s Divided-Difference Formula
- Natural Cubic Spline
- Clamped Cubic Spline
- Numerical Differentiation and integration
- Differentiation
- Three-Point and Five-Point formula
- Integration
- Trapezoidal Rule
- Simpson's Rule
- Newton_Cotes
- Romberg
- Gaussian_Quad
- Mutiple Integrals
- SimpsonDoubleIntegral
- GaussianDoubleIntegral
- Differentiation
- NthDerivative(f, x, n)
using NumericalAnalysis
NthDerivative(x->x^3, 4, 4) # 0
0
NthDerivative(x->x^3, 4, 2) # 24
24
NthDerivative(cos, 1, 5) # NthDerivative(cos, 1, 5)
-0.8414709848078965
- TaylorPolynomials(f, x, x₀, n)
TaylorPolynomials(cos, 0.1, 0, 6) # TaylorPolynomials(cos, 0.1, 0, 6)
0.9950041652777778
TaylorPolynomials(x->x^3, 1.1, 1, 6) #1.331000..
1.3310000000000004
- Bisection(f, a, b)
using NumericalAnalysis: SEq1
SEq1.Bisection(sin, π/2, 3π/2)
3.14159274721655
SEq1.Bisection(x->x-1, 0, 3π/2, output_seq=true)
26-element Array{Any,1}: [2.356194490192345, 1.3561944901923448] [1.1780972450961724, 0.17809724509617242] [0.5890486225480862, -0.4109513774519138] [0.8835729338221293, -0.11642706617787069] [1.030835089459151, 0.03083508945915092] [0.9572040116406402, -0.04279598835935983] [0.9940195505498955, -0.0059804494501044525] [1.0124273200045233, 0.01242732000452329] [1.0032234352772094, 0.0032234352772093633] [0.9986214929135524, -0.0013785070864476001] ⋮ [1.0000056708901213, 5.670890121267647e-6] [0.9999966827214422, -3.3172785578461372e-6] [1.0000011768057817, 1.1768057817107547e-6] [0.9999989297636119, -1.0702363880676913e-6] [1.0000000532846969, 5.328469687704285e-8] [0.9999994915241543, -5.084758456508354e-7] [0.9999997724044256, -2.2759557438689626e-7] [0.9999999128445612, -8.71554387549267e-8] [0.9999999830646291, -1.6935370883430778e-8]