Numerical Analysis


Coverage codecov License


It's a julia package for Numerical Analysis.

Now, i just write a little function in it. I am a beginner of Julia and numerical analysis, there may be many problems, 👏 to discuss with me.🤣


Basic

here are some function:

Now, i just write some functions:

  • Basic
    • N the derivative, use ForwardDiff packageto calculate $\frac{dy}{dx}$, then recursive to get Nth derivative.(emmm, I feel a bit slow)
    • Taylor Polynomial, get the value nth Taylor Ploynomial.
  • Solutions for equation in one Variable
    • Bisection function, find root
    • fixed_point function.
    • Newton's Method
    • The Secant Method
    • The False Position Method
    • Modified Newton's Method
    • Müller’s Method
  • Interpolation and the Lagrange Polynomial
    • nth Larange interpolating polynomial
    • Neville’s Iterated Interpolation
    • Newton’s Divided-Difference Formula
    • Natural Cubic Spline
    • Clamped Cubic Spline
  • Numerical Differentiation and integration
    • Differentiation
      • Three-Point and Five-Point formula
    • Integration
      • Trapezoidal Rule
      • Simpson's Rule
      • Newton_Cotes
      • Romberg
      • Gaussian_Quad
    • Mutiple Integrals
      • SimpsonDoubleIntegral
      • GaussianDoubleIntegral


  • NthDerivative(f, x, n)
using NumericalAnalysis
NthDerivative(x->x^3, 4, 4) # 0
0
NthDerivative(x->x^3, 4, 2) # 24
24
NthDerivative(cos, 1, 5) # NthDerivative(cos, 1, 5)
-0.8414709848078965

  • TaylorPolynomials(f, x, x₀, n)
TaylorPolynomials(cos, 0.1, 0, 6) # TaylorPolynomials(cos, 0.1, 0, 6)
0.9950041652777778
TaylorPolynomials(x->x^3, 1.1, 1, 6) #1.331000..
1.3310000000000004

  • Bisection(f, a, b)
using NumericalAnalysis: SEq1
SEq1.Bisection(sin, π/2, 3π/2)
3.14159274721655
SEq1.Bisection(x->x-1, 0, 3π/2, output_seq=true)
26-element Array{Any,1}:
 [2.356194490192345, 1.3561944901923448]
 [1.1780972450961724, 0.17809724509617242]
 [0.5890486225480862, -0.4109513774519138]
 [0.8835729338221293, -0.11642706617787069]
 [1.030835089459151, 0.03083508945915092]
 [0.9572040116406402, -0.04279598835935983]
 [0.9940195505498955, -0.0059804494501044525]
 [1.0124273200045233, 0.01242732000452329]
 [1.0032234352772094, 0.0032234352772093633]
 [0.9986214929135524, -0.0013785070864476001]
 ⋮
 [1.0000056708901213, 5.670890121267647e-6]
 [0.9999966827214422, -3.3172785578461372e-6]
 [1.0000011768057817, 1.1768057817107547e-6]
 [0.9999989297636119, -1.0702363880676913e-6]
 [1.0000000532846969, 5.328469687704285e-8]
 [0.9999994915241543, -5.084758456508354e-7]
 [0.9999997724044256, -2.2759557438689626e-7]
 [0.9999999128445612, -8.71554387549267e-8]
 [0.9999999830646291, -1.6935370883430778e-8]